Enrollment No: _____

Exam Seat No:____

C. U. SHAH UNIVERSITY Winter Examination-2019

Subject Name: Advanced Mathematics

Subject Code: 2TE02AMT1 Branch: Diploma (All)

Semester: 2 Date: 12/09/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) If A(-5, 7) and B(7, -2) then AB = ____. (A) 15 (B) 169 (C) $\sqrt{29}$ (D) None of these
- **b)** If A(1, 7) and B(3, 3) are the given points, then the midpoint of AB is

$$\overline{\text{(A)}\left(-2,5\right)}$$
 (B) $\left(5,-2\right)$ (C) $\left(2,5\right)$ (D) $\left(5,2\right)$

- c) y intercept of line 2x 6y + 4 = 0 is _____. (A) -2/3 (B) 2/3 (C) -2 (D) 2
- **d**) Radius of the circle $x^2 + y^2 = 25$ is ______.
 - (A) 5 (B) 25 (C) 5/2 (D) None of these

e)
$$\lim_{x\to 1} \frac{x^3-1}{x-1} =$$

$$(A) - 1 (B) 1 (C) 0 (D) 3$$

$$\mathbf{f)} \quad \lim_{x \to 0} \frac{\tan x}{x} = \underline{\hspace{1cm}}$$

$$(A) - 1$$
 (B) 0 (C) 1 (D) None of these

g)
$$\lim_{x\to 0} \frac{a^x - 1}{x} =$$

(A)
$$\log_a e$$
 (B) $\log_e a$ (C) e (D) 1

$$\mathbf{h)} \quad \frac{d\left(\cos ecx\right)}{dx} = \underline{\hspace{1cm}}$$

(A)
$$\tan x$$
 (B) $\sec^2 x$ (C) $-\tan x$ (D) $-\cos ecx \cot x$

$$\mathbf{i)} \quad \frac{d(x)}{dx} = \underline{\hspace{1cm}}$$

(A)
$$\frac{x^2}{2}$$
 (B) $\frac{1}{x}$ (C) 0 (D) 1

j) If
$$f(x) = \log \sqrt{x^2 + 1}$$
 then $f'(0) =$ _____.
(A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 0

$$\mathbf{k}) \quad \frac{d\left(e^{5x}\right)}{dx} = \underline{\hspace{1cm}}$$

(A)
$$5e^x$$
 (B) e^x (C) $\frac{e^{5x}}{5}$ (D) $5e^{5x}$

$$\int \frac{1}{x} dx = \underline{\qquad}$$

(A)
$$\log x + c$$
 (B) $e^x + c$ (C) 1 (D) 0

$$\mathbf{m}) \quad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \underline{\hspace{1cm}}$$

(A)
$$\cot^{-1} \frac{x}{a} + c$$
 (B) $\tan^{-1} \frac{x}{a} + c$ (C) $\cos^{-1} \frac{x}{a} + c$ (D) $\sin^{-1} \frac{x}{a} + c$

n)
$$\int_{0}^{1} \frac{2}{1+x^2} dx = \underline{\hspace{1cm}}$$

(A)
$$\pi$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) None of these

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Find coordinates of the points of trisection of the line segment joining points
$$A(4, 5)$$
 and $B(13, -4)$. (5)

b) Find the equation of line perpendicular to line
$$4x - y + 5 = 0$$
 and passing through $(1, -2)$.

c) Prove that if
$$f(x) = \log\left(\frac{x-1}{x}\right)$$
 then prove that $f(x) + f(-x) = f(x^2)$. (4)

Q-3 Attempt all questions (14)

a) Prove that
$$\lim_{x \to 3} \frac{\sqrt{x+2} - \sqrt{5}}{\sqrt{x+4} - \sqrt{7}} = \frac{\sqrt{35}}{5}$$
 (5)

b) Evaluate:
$$\lim_{x \to (-2)} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2}$$
 (5)

c) Show that the points A(1, 2), B(2, 3) and C(0, 5) are the vertices of a right angled triangle. (4)

Q-4 Attempt all questions (14)

a) Find equation of a circle passing through points
$$(1, 0)$$
, $(0, 1)$ and $(0, 0)$. (5)

b) Find derivative of
$$y = 3^{4x}$$
 using definition. (5)

c) Find
$$\frac{dy}{dx}$$
 if $y = \frac{\sin(\log x)}{x}$. (4)

Q-5 Attempt all questions (14)

	a)	Evaluate: $\lim_{x \to 0} \frac{2(5^x) + 3(2^x) - 5}{x}$	(5)
	b)	The equation of motion of a particle is $S = 2t^3 + 3t^2 - 12t + 5$. (i) Find velocity at $t = 0$. (ii) Find acceleration at $t = 1$.	(5)
	c)	Find $\frac{dy}{dx}$ if $y = x^{\sin^3 x}$.	(4)
Q-6		Attempt all questions	(14)
	a)	Evaluate: $\int \frac{x^4 + x^2 + 1}{x^2 + 1} dx$	(5)
	b)	If $y = e^x \sin x$ then prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.	(5)
		Evaluate: $\int x \log x dx$	(4)
Q-7		Attempt all questions	(14)
	a)	Find $\frac{dy}{dx}$ if $y = \log\left(\frac{\sin x}{1 + \cos x}\right)$.	(5)
	b)	Evaluate: $\int \frac{e^x (1+x)}{\cos^2(xe^x)} dx$	(5)
	c)	Evaluate: $\int \frac{(1-3x)^2}{x^3} dx$	(4)
Q-8		Attempt all questions	(14)
	a)	Prove that $\int_{-\infty}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{dx} dx = \frac{\pi}{2}.$	(5)

b) Find the volume of sphere of radius r.
c) Find the equation of circle having centre (1, 1) and passing through (-2, 4). **(5)**

(4)

